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Lecture I: Overview of String Theory & Applications
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GTRING THEORY GUMMARIZED:

| JUST HAD AN AWESOME |DEA.
SUPPOSE ALL MATTER AND ENERGY
IS MADE OF TINY, VIBRATING STRINGS.
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Overview

What is string theory?
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Overview

What is string theory?

String theory is an active research framework in particle physics that
attempts to reconcile quantum mechanics and general relativity
(invariance principles). It is a contender for a theory of everything, a
self-contained mathematical model that describes all fundamental
forces and forms of matter, a theory of strings, branes, and their
dynamics.

Superstring
Theory

OFT General
relativity
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Overview

Structure of string theory - limits & dualities

11-dimensional supergravity

Type IIA Eg x Eg heterotic

Type 1IB ~ SO(32) heterotic
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Overview

Structure of string theory - limits & dualities

11-dimensional supergravity

Type IIA Eg x Eg heterotic

Type 1IB SO(32) heterotic

Type |

¢ supergravity theories are low-energy limits of these string
theories (e.g. type IIA su}?1 rgravity is derived from type IIA
string theory by taking the massless tree-level approximation)
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Overview

Structure of string theory - limits & dualities

11-dimensional supergravity

Type IIA Eg x Eg heterotic

Type 1IB SO(32) heterotic

Type |

supergravity theories are low-energy limits of these string
theories (e.g. type IIA su}?1 rgravity is derived from type IIA
string theory by taking the massless tree-level approximation)
supergravity (SUGRA) emerges when making SUSY local

1+1 dim CFT on world-sheets of strings
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Overview
Structure of string theory - limits & dualities

11-dimensional supergravity

. Type IIA Eg x Eg heterotic
T-duality <

Type 1IB SO(32) heterotic

J S-duality
Type |

supergravity theories are low-energy limits of these string
theories (e.g. type IIA su}?1 rgravity is derived from type IIA
string theory by taking the massless tree-level approximation)
supergravity (SUGRA) emerges when making SUSY local

1+1 dim CFT on world-sheets of strings

dualities relate these “corners of superstring theory”
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Terra incognita
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Overview

Modern research areas
¢ conformal field theory (CFT)

¢ integrability
applications to heavy-ion-collisions
dS/CFT
black holes, black branes
string phenomenology *
gauge /gravity correspondence (duality) *
AdS/CMT *
higher spin holography *

scattering amplitudes *

* group projects
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Overview
An eye on applications

¢ MHV amplitudes

¢ applications to heavy-ion-collisions

e shear viscosity over entropy density (hydro, dragging string)

n_ 1 (h=kp=c=1) n = lim ([T, T*])(w, k = 0)

5 & L e

e thermalization ¢~

e chiral magnetic effect chiral vortical effect
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Overview
An eye on applications

¢ MHV amplitudes

¢ applications to heavy-ion-collisions

e shear viscosity over entropy density (hydro, dragging string)

"L (h=kp=c=1) n = lim ([T, T*])(w, k = 0)

s  4r 0

e thermalization ¢~
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Schedule

Monday, Tuesday, Thursday
09:00-10:00 Lecture

Break & Free discussion
10:30-11:30 Lecture
11:30-12:30 Hands-on tasks
Lunch

14:00-17:00 Hands-on tasks
17:00-19:00 Discussion of solutions
Wednesday, Friday: Group projects from 16:00-18:00

Saturday: Group projects discussion from 09:00-13:00

Monday, Tuesday: Visiting Strings2012 in MUnchen
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Lectures
Monday-Friday 9:00 - 10:00, 10:30 - 11:30

Lecture I: Overview of String Theory & Modern Research

(general relativity, action principles)

Lecture II: Bosonic String Theory
(open/closed strings, quantization, string spectrum)

Lecture III: Bosonic String Theory

(CFT, operator product expansion, Virasoro algebra,
mode expansions, vertex operators)

Lecture IV: Bosonic String Theory

(Polyakov path integral, string scattering amplitudes,
string S-matrix)

Lecture V: Bosonic String Theory
(compactification, moduli, spectrum)
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Lectures
Monday-Friday 9:00 - 10:00, 10:30 - 11:30

Lecture VI: Bosonic String Theory

(one-loop amplitudes, T-duality, D-branes, outlook
on superstrings)

Lecture VII: Superstring Theory

(SUSY, type I, type II, Calabi-Yau compactification,
T-duality, flux compactification, string geometry)

Lecture VIII: Superstring Theory

(string dualities, M-theory, string phenomenology)

Lecture IX: Gauge/Gravity Duality & Black Holes
(AdS/CFT conjecture, extensions)

Lecture X: Gauge/Gravity Duality & Black Holes
(applications to heavy-ion collisions and cond-mat)
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Exercises
Monday-Friday 11:30 - 17:00

Exercise I: General relativity, action principles, CFT

Exercise II: CFT, string scattering, string spectrum

Exercise III: Compactification, T-duality, spinors & SUSY

Exercise IV: Anomaly cancellation

Exercise V: AdS spacetime, correlation functions
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Goals

Participants of the powerweek will
- be able to carry out simple computations in string theory

- have an overview of string theory basics & current string
theory research

- know the origins of gauge/gravity duality

- have the knowledge needed to create simple string setups
in order to investigate problems in current research
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Invitation: Gauge/gravity correspondence
-Why does it work?

Stack of Nc D3-branes (coincident)

in 10 dimensions
Two distinct ways to / \
describe this stack:

7 7

4-dimensional worldvolume < duality’ S~— N}
theory on the D3-branes

(e.g. N = 4 Super-Yang-Mills) AdSsx §°
/ / near-horizon geometry
gauge side (e.g. Supergravity)

gravity side
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Invitation: Gauge/gravity correspondence
-Why does it work?

Stack of Nc D3-branes (coincident)

in 10 dimensions
Two distinct ways to / \\
describe this stack:

7 7

4-dimensional worldvolume < duality’ S~— N}
theory on the D3-branes

(e.g. N = 4 Super-Yang-Mills) AdSsx §°
/ / near-horizon geometry
gauge side (e.g. Supergravity)

gravity side

-How does it work?
Add/change geometric objects on ‘gravity side’:

Geometric setup: Find solution ) Field Theory
Strings /Branes ) configuration result

(Example: Schwarzschild radius corresponds to temperature )
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Solutions

(to some of the exercises)
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Exercise 1.2

In the following exercises one has the usval open or closed string boundary
conditions (Neumann or periodic) on ¥ for g = 0,...,24 but a different
boundary condition on X*. Each of these has an important physical
interpretation, and will be developed in detail in chapter 8. Find the mode
expansion,_the mass spectrum, and (for the closed string) the constramt
from eo-translation invariance in terms of the occupation numbers. In
some cases you need the result of exercise 1.5

1.6 Open strings with
X 0y=0, X¥xé=y
with y a constant. This is an open string with both ends on D-branes.

1.7 Open strings with
XP0=0, #X3H=0.
This is an open siring with one end on a D-brane and one end free.

bl
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Solution to exercise 1.2 (1)

The mode expansion satisfying the boundary conditions is

XB(r,0) = 2/ zﬂ: %cr;‘:,ﬁ exp [— m?ﬂ} sin $.~ (20)

where the sum runs over the half-odd-integers, n = 1/2, —1/2,3/2,—3/2,.... Note that there is no
p?. Again, Hermiticity of X% implies a2, = (03’)1. Using (1.3.18),

(HEE(T. T) =— \%{ Z criﬁ exp l_?.ﬂ-r;cr Sin E:) (21)
n

We will now determine the commutation relations among the agﬁ from the equal time com-

mutation relations (1.3.24b). Not surprisingly, they will come out the same as for the free string
(1.3.25b). We have:

id(oc — ') = [X**(1,0), 1% (1, 0)] (22)

] 1 - . mno . wn'd’
25 a%exp {— :

12y
n.nt

n

[ [

Since the LHS does not depend on 7, the coefficient of exp[—immeT /] on the RHS must vanish for

m = O
1 1 ox ox . mno . w(n—m)a’ ;
GZH: E[ﬂn O] SIT1 ——sin E = (0 — o' )dm. (23)

Matthias Kaminski Introduction to String Theory




Solution to exercise 1.2 (2)

Multiplying both sides by sin[mn'a /I] and integrating over & now vields,

1 o 1 . T(n—m)o' o ;. T(n+m)o’
o ([n o] sin ; + [adk . a2 ] sin E

( 5,02 ] = nomo, )

The part of the Hamiltonian (1.3.19) contributed by the X 25 pseillators is

5 '[ r 25y 2 1 omy2
—-ls'm-’p"'fg der (Eﬂﬂs {l'[ ) + T~ (dg}f ) )

im(n +n'jer
mﬂzm amm[ E ]

nn'
f gno . Tn'o T m'a
ﬂ'r:r — sin —E sin + cos CO8S

[ [ [
y +Zﬂ25 25
o' p

B I"
E : E._n +{12‘3’ ﬂﬂa)

n=1,2

as advertised.

4’ p"‘




Solution to exercise 1.2 (3)

25 25
P Zﬂ

1
E._n 25 a5
Ao/ pt @n F %)

1
2o/ pt

1
2o/pt

ﬂ!g =

where the level spectrum i1s given in terms of the occupation numbers by

24~

(]
ZZH‘\' + Z: 1nNax .

i=2 n=1 n=1,/2

The ground state is still a tachyon,
5 15
m° = — :
l6a'
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Solution to exercise 1.2 (4)

The first excited state has the lowest X #° oscillator excited (Nas 4 o= 1). and is also tachvonic:

E”E - 16&-’) (30)

There are no massless states, as the second excited state 1s alreadyv massive:

G”E - 1&@) (31)

This state is 24-fold degenerate, as it can be reached either by N;1 =1 or by Nﬁlﬁ = 2. Thus it

is a massive vector with respect to the SO(24,1) Lorentz symmetry preserved by the D-brane. The

third excited state, with
0
2 ;
me = —. a2
( 16&’) (32)

18 25-fold degenerate and corresponds to a vector plus a scalar on the D-brane—it can be reached

by Nog 120 =1, by Nosqp0 =3, 0r by Ny =1, Nog g0 = 1.
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Exercise 2.1

[17 fa} By computing the relevant OPEs, confirm the weights stated inJ

ed. (2.4.17) and determine which operators are tensors.
(b) Do this for the same operators in the linear dilaton theory,
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