Introduction to Gauge/Gravity Correspondence & Heavy-Ion-Applications

FIAS Frankfurt, HGS-HIRe Powerweek, June 27-30th 2011

by Matthias Kaminski (Princeton University)

Introduction to Gauge/Gravity Correspondence & Heavy-Ion-Applications

FIAS Frankfurt, HGS-HIRe Powerweek, June 27-30th 2011

by Matthias Kaminski (Princeton University)

Lecture I & II: Introduction to Gauge/Gravity

-Reasons to ignore the correspondence

- 1. String Theory may not describe our nature.
- 2. Gauge/Gravity Correspondence may be wrong. It is a conjecture, which is not proven in general, only in special cases.

-Reasons to ignore the correspondence

- 1. String Theory may not describe our nature.
- 2. Gauge/Gravity Correspondence may be wrong. It is a conjecture, which is not proven in general, only in special cases.

Foundations of Gauge/Gravity Correspondence may be unphysical since it arises in the context of String Theory, and in addition it may be mathematically wrong.

So, why am I here at 9 a.m. on a Monday morning?

Introduction to Gauge/Gravity & Heavy-Ion-Applications

in SPJR	N S P F R E
	Hep :: Inst :: Help:
ads/cft find j "Phys.Rev.Lett.,105** :: more Sort by:	gauge/gravity Search Tips find j "Phys.Rev.Lett.,105** :: more Advanced Search
latest first 💽 desc. 🛒 – or rar	Sort by: Display results: Output format: latest first Image: Imag
<u><u>ner</u></u> 3,000 records	HEP 251 records found 1 - 25 b jump to record: 1

in SPJR	i n S PFR	in SPARE
ads/cft		HEP :: INST :: HELP:
find j "Phys.Rev.Lett.,105*" :: more Sort by:	gauge/gravity	string theory Search Tips
latest first ✓ desc. ✓ – or rar HEP 3,008 records	Sort by: latest first 💽 desc. 丈 - or	Sort by: Display results: Output format: Istast first Istast first Istast first
	HEP 251 records	HEP 31,455 records found 1 - 25 ► jump to record: 1

in SPJR	in Spfr	in S PFR I	INSPRE
ads/cft find j "Phys.Rev.Lett.,105*" :: more Sort by:	gauge/gravity find j "Phys.Rev.Lett.,105*" :: more	string theory	HEP :: INST :: HELP
HEP 3,008 records	Sort by: latest first • desc. • - or r HEP 251 records	find i "Phys.Rev.Lett.,105"" :: more Sort by: Iatest first _ desc or rank	QCD Search Search find i "Phys.Rev.Lett.,105*" :: more Display results: Output format: Sort by: Display results: Output format: latest first Idesc. I - or rank by - I 25 results Isingle list
		HEP 31,455 records	HEP 35,056 records found 1 - 25 b jump to record: 1

-Strange calculations with publications

INSPJR	i n S P BR	in SPR	INSPRE
ads/cft find j "Phys.Rev.Lett.,105*" :: more Sort by:	gauge/gravity find i "Phys.Rev.Lett.,105*" :: more	string theory	HEP :: INST :: HELP:
latest first Idesc. I - or rar HEP 3,008 records	Sort by: latest first _ desc or r	find i "Phys.Rev.Lett.,105** :: more Sort by: Iatest first desc. or rank 	QCD Search Search find i "Phys.Rev.Lett.,105*" :: more Display results: Output format: Sort by: Display results: Output format:
		HEP 31,455 records	HEP 35,056 records found 1 - 25 ► jump to record: 1

➡ ~10% of String Theory *"are"* AdS/CFT

-Strange calculations with publications

INSPJR	i n S P BR	in SPRI	INSPRE
ads/cft find j "Phys.Rev.Lett.,105*" :: more Sort by:	gauge/gravity find j "Phys.Rev.Lett.,105*" :: more	string theory	Hep :: Inst :: Help:.
latest first Image: Constraint of the second seco	Sort by: latest first	find i "Phys.Rev.Lett.,105*" :: more Sort by: latest first _	QCD Search Search Search Advanced Search find j "Phys.Rev.Lett.,105*" :: more Display results: Output format:
	HEP 251 records	HEP 31,455 records	Iatest first

➡ ~10% of String Theory *"are"* AdS/CFT

➡ AdS/CFT is a factor 10 less *"important"* than QCD

-Strange calculations with publications

in SPJR	in S P FR	in S P R I	INSPRE
ads/cft find j "Phys.Rev.Lett.,105*" :: more			HEP :: INST :: HELP
Sort by: latest first 💽 desc. 💌 - or rar	Sort by:	string theory find j "Phys.Rev.Lett.,105*" :: more	QCD Search Tips Advanced Search
HEP 3,008 records	latest first ✓ desc. ✓ – or r HEP 251 records	Sort by:	Sort by: Display results: Output format: latest first Idesc. Image: - or rank by - million (Second Control of Control
		HEP 31,455 records	HEP 35,056 records found 1 - 25 ▶ jump to record: 1

- ➡ ~10% of String Theory *"are"* AdS/CFT
- ➡ AdS/CFT is a factor 10 less *"important"* than QCD
- ➡ String Theory is almost as *"important"* as QCD

Introduction to Gauge/Gravity & Heavy-Ion-Applications

-Strange calculations with publications

INSPERINSPERINSPERINSPERE

14. The Large N limit of superconformal field theories and supergravity. Juan Martin Maldacena (Harvard U.). HUTP-98-A097. Nov 1997. 19 pp. Published in Adv.Theor.Math.Phys. 2 (1998) 231-252 Talk given at <u>SPIRES Conference C98/11/28</u> (Conference information coming soon) e-Print: hep-th/9711200

> References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote Abstract and Postscript and PDF from arXiv.org

Journal Server

Journal Server

ATMP Server

Mathematical Reviews

Detailed record - Similar records - Cited by 7553 records

, ound meet is annost as important as you

Proofs of Gauge/Gravity Correspondences -Some examples

- Conformal anomaly of the same theory
- RG flows away from most symmetric case
- … many other symmetric instances of the correspondence

-Reasonable example results from Gauge/Gravity!

Compute observables in strongly coupled QFTs

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects
- Transport coefficients (e.g. 'universal' viscosity bound)

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects
- Transport coefficients (e.g. 'universal' viscosity bound)
- Model QCD equation of state

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects
- Transport coefficients (e.g. 'universal' viscosity bound)
- Model QCD equation of state
- Deconfinement & Break: Chiral, Conformal, SUSY

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects
- Transport coefficients (e.g. 'universal' viscosity bound)
- Model QCD equation of state
- Deconfinement & Break: Chiral, Conformal, SUSY
- Condensed matter applications (strongly corr. electrons)

-Reasonable example results from Gauge/Gravity!

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects
- Transport coefficients (e.g. 'universal' viscosity bound)
- Model QCD equation of state

Matthias Kaminski

- Deconfinement & Break: Chiral, Conformal, SUSY
- Condensed matter applications (strongly corr. electrons)
- [AdS/QCD (bottom-up approach) distinct from string constr.]

- Compute observables in strongly coupled QFTs
- Meson spectra/melting, glueball spectra
- Quark energy loss, Jets
- Thermodynamics/Phase diagrams
- Hydrodynamics (beyond Muller-Israel-Stewart), chiral effects
- Transport coefficients (e.g. 'universal' viscosity bound)
- Model QCD equation of state
- Deconfinement & Break: Chiral, Conformal, SUSY
- Condensed matter applications (strongly corr. electrons)

-Reasonable example results from Gauge/Gravity!

e.g. thermal spectral function for flavor current in a hot and dense charged plasma

Introduction to Gauge/Gravity & Heavy-Ion-Applications

-Reasonable example results from Gauge/Gravity!

e.g. thermal spectral function for flavor current in a hot and dense charged plasma

e.g. phase diagrams of fundamental matter (quarks) in a hot and dense plasma carrying isospin charge

Introduction to Gauge/Gravity & Heavy-Ion-Applications

Low shear viscosity

Theory/Model	η/s	Reference
Lattice QCD	0.134(33)	[Meyer, 2007]
Hydro (Glauber)	0.19	[Drescher et al., 2007]
Hydro (CGC)	0.11	[Drescher et al., 2007]
Viscous Hydro (Glauber)	$0.08, 0.16, \{0.03\}$	[Romatschke et al.,2007]

Gauge/Gravity:
$$\frac{\eta}{s} \ge \frac{1}{4\pi} \approx 0.08$$
 [Policastro, Son, Starinets, 2001]

Gauge/Gravity is a Powerful Tool

- non-perturbative results, strong coupling
- final treat many-body systems
- direct computations in real-time thermal QFT (transport)
- no sign-problem at finite charge densities
- methods often just require solving ODEs in classical gravity
- quick numerical computations (~few seconds on a laptop)
- (turn around: study strongly coupled gravity)

Invitation: Gauge/Gravity Correpondence -Less pessimistic view:

- 1. String Theory may not describe our nature uniquely. But it is mathematically correct.
- 2. Gauge/Gravity Correspondence is a mathematical map that is conjectured from the correct mathematical framework of String Theory.

Invitation: Gauge/Gravity Correpondence -Less pessimistic view:

- 1. String Theory may not describe our nature uniquely. But it is mathematically correct.
- 2. Gauge/Gravity Correspondence is a mathematical map that is conjectured from the correct mathematical framework of String Theory.
 - Gauge/Gravity Correspondence may be a mathematically correct map, which relates particular quantum field theories to particular gravity theories (assuming the conjecture can be proven).

Invitation: Gauge/Gravity Correpondence -Less pessimistic view:

- 1. String Theory may not describe our nature uniquely. But it is mathematically correct.
- 2. Gauge/Gravity Correspondence is a mathematical map that is conjectured from the correct mathematical framework of String Theory.
 - Gauge/Gravity Correspondence may be a mathematically correct map, which relates particular quantum field theories to particular gravity theories (assuming the conjecture can be proven).
 - Gauge/Gravity may be used as a mathematical tool to map effective field theories to gravity theories, even if string theory is not describing our nature.

An example: Correct math, wrong physics?

-Perturbations near a classical black hole:

An example: Correct math, wrong physics?

-Perturbations near a classical black hole:

perturbations are described by a linearized wave equation in curved space, i.e. second order linear differential equation in the radial coordinate r

-Perturbations near a classical black hole:

- perturbations are described by a linearized wave equation in curved space, i.e. second order linear differential equation in the radial coordinate r
- mathematics tells us there exist two solutions

-Perturbations near a classical black hole:

- perturbations are described by a linearized wave equation in curved space, i.e. second order linear differential equation in the radial coordinate r
- ➡ mathematics tells us there exist two solutions
- ➡ physics tells us only the infalling solution is realized

-Perturbations near a classical black hole:

- perturbations are described by a linearized wave equation in curved space, i.e. second order linear differential equation in the radial coordinate r
- ➡ mathematics tells us there exist two solutions
- physics tells us only the infalling solution is realized
- ➡ later: even the outgoing solution contains physics

-Perturbations near a classical black hole:

- perturbations are described by a linearized wave equation in curved space, i.e. second order linear differential equation in the radial coordinate r
- ➡ mathematics tells us there exist two solutions
- ➡ physics tells us only the infalling solution is realized
- ➡ later: even the outgoing solution contains physics

-Perturbations near a classical black hole:

- perturbations are described by a linearized wave equation in curved space, i.e. second order linear differential equation in the radial coordinate r
- ➡ mathematics tells us there exist two solutions
- physics tells us only the infalling solution is realized
- ➡ later: even the outgoing solution contains physics

Why Anti-deSitter, isn't our world deSitter ?

- 1. Some "String Theory" *may describe* our nature uniquely.
- 2. Gauge/Gravity Correspondence *may be* an exact duality between two ways of describing this one unique theory.

- 1. Some "String Theory" *may describe* our nature uniquely.
- 2. Gauge/Gravity Correspondence *may be* an exact duality between two ways of describing this one unique theory.
 - Gauge/Gravity Correspondence suggests that our present way of assigning some phenomena to gravity, and others to quantum field theories should be unified.

- 1. Some "String Theory" *may describe* our nature uniquely.
- 2. Gauge/Gravity Correspondence *may be* an exact duality between two ways of describing this one unique theory.
 - Gauge/Gravity Correspondence suggests that our present way of assigning some phenomena to gravity, and others to quantum field theories should be unified.
 - The full holographic dual to our world would contain both: our gravitational and standard model physics

- 1. Some "String Theory" *may describe* our nature uniquely.
- 2. Gauge/Gravity Correspondence *may be* an exact duality between two ways of describing this one unique theory.
 - Gauge/Gravity Correspondence suggests that our present way of assigning some phenomena to gravity, and others to quantum field theories should be unified.
 - The full holographic dual to our world would contain both: our gravitational and standard model physics

So, why am I here at 9 a.m. on a Monday morning?

Two answers:

1. Gain a geometric (a dual) understanding of strongly coupled dynamics.

2. Studying examples of gauge/gravity dualities, we learn about the particular quantum field theory and the particular gravity, but possibly also about quantum gravity in general!

Lectures

Tuesday-Thursday 9:00 - 10:30, FIAS ground floor

Lecture I: Introduction to Gauge/Gravity & Applications I

Lecture II: Introduction to Gauge/Gravity & Applications II

Lecture III: Thermal Spectral Functions

Lecture IV: Beyond Hydrodynamics

Lecture V: Phase Transitions

Exercises

Monday-Thursday 13:30 - 17:00, on the roof of FIAS

Exercise I: AdS Coordinates & Brane Embeddings

Exercise II: Thermal Green's Functions & Viscosity

Exercise III: More than Hydrodynamics from Gravity

Exercise IV: Superfluid Phase Transition & Conductivity

Goals

Participants of the powerweek will be able to

- carry out computations in classical (super)gravity which are state-of-the-art in gauge/gravity research

- translate gravity results into gauge theory expressions (at least for the subset of examples presented)

- judge the relevance of gauge/gravity to their own work

Example: Schwarzschild radius corresponds to temperature

Lecture III: Thermal Spectral Functions

[Erdmenger, M.K., Rust 0710.0334]

Effective action:

$$S_{\rm D7} = \int {\rm d}^8 x \sqrt{\left| \det\{[g+F] + \tilde{F}\} \right|} \,, \ F_{\mu\nu} = \partial_{[\mu} A_{\nu]}$$

Effective action:
$$S_{D7} = \int d^8 x \sqrt{\left| \det \{ [g+F] + \tilde{F} \} \right|}, \quad F_{\mu\nu} = \partial_{[\mu} A_{\nu]}$$

Fluctuations

Equation of motion:
$$0 = \tilde{A}'' + \frac{\partial_{\rho}[\sqrt{|\det G|}G^{22}G^{44}]}{\sqrt{|\det G|}G^{22}G^{44}}\tilde{A}' - \frac{G^{00}}{G^{44}}\varrho_{H}^{2}\omega^{2}\tilde{A}$$

[Erdmenger, M.K., Rust 0710.0334]

Effective action:

$$S_{\rm D7} = \int \mathrm{d}^8 x \sqrt{\left|\det\{[g+F] + \tilde{F}\}\right|}, \quad F_{\mu\nu} = \partial_{[\mu}A_{\nu]}$$

Fluctuations

Equation of motion:

Curved' Maxwell equations:

$$\partial_{\mu} F^{\mu\nu} = 0$$

$$\partial_{\mu} \left(\sqrt{-G} G^{\mu\nu} G^{\rho\sigma} F_{\nu\sigma} \right) = 0$$

$$\partial_{\mu} \left(\sqrt{-G} G^{\mu\nu} G^{\rho\sigma} \partial_{[\nu} \tilde{A}_{\sigma]} \right) = 0$$

Effective action:
$$S_{D7} = \int d^8 x \sqrt{\left| \det \{ [g+F] + \tilde{F} \} \right|}, \quad F_{\mu\nu} = \partial_{[\mu} A_{\nu]}$$

Fluctuations

Equation of motion:
$$0 = \tilde{A}'' + \frac{\partial_{\rho}[\sqrt{|\det G|}G^{22}G^{44}]}{\sqrt{|\det G|}G^{22}G^{44}}\tilde{A}' - \frac{G^{00}}{G^{44}}\varrho_{H}^{2}\omega^{2}\tilde{A}$$

Effective action:
$$S_{D7} = \int d^8x \sqrt{\left|\det\{[g+F] + \tilde{F}\}\right|}, F_{\mu\nu} = \partial_{[\mu}A_{\nu]}$$

Fluctuations

Equation of motion:
$$0 = \tilde{A}'' + \frac{\partial_{\rho}[\sqrt{|\det G|}G^{22}G^{44}]}{\sqrt{|\det G|}G^{22}G^{44}}\tilde{A}' - \frac{G^{00}}{G^{44}}\varrho_{H}^{2}\omega^{2}\tilde{A}$$

Boundary conditions:
$$\tilde{A} = (\varrho - \varrho_H)^{-i\omega} [1 + \frac{i\omega}{2}(\varrho - \varrho_H) + \dots]$$

[*Erdmenger, M.K., Rust 0710.0334*]

Effective action:
$$S_{D7} = \int d^8 x \sqrt{\left|\det\{[g+F] + \tilde{F}\}\right|}, \quad F_{\mu\nu} = \partial_{[\mu}A_{\nu]}$$
Fluctuations
$$\partial_{\mu}\left[\sqrt{\left|\det G\right|}G^{22}G^{44}\right] = G^{00}$$

Equation of motion:
$$0 = \tilde{A}'' + \frac{\partial_{\rho}[\sqrt{|\det G|}G^{22}G^{44}]}{\sqrt{|\det G|}G^{22}G^{44}}\tilde{A}' - \frac{G^{00}}{G^{44}}\varrho_{H}^{2}\omega^{2}\tilde{A}$$

Boundary conditions:
$$\tilde{A} = (\varrho - \varrho_H)^{-i\mathfrak{w}} [1 + \frac{i\mathfrak{w}}{2}(\varrho - \varrho_H) + \dots]$$

Translation to Gauge Theory by duality:

$$A_{\mu} \stackrel{{}_{\mathrm{AdS/CFT}}}{\leftrightarrow} J^{\mu}$$
 (source)

[*Erdmenger, M.K., Rust 0710.0334*]

Effective action:
$$S_{D7} = \int d^8 x \sqrt{\left|\det\{[g+F] + \tilde{F}\}\right|}, F_{\mu\nu} = \partial_{[\mu}A_{\nu]}$$

Fluctuations

Equation of motion:
$$0 = \tilde{A}'' + \frac{\partial_{\rho}[\sqrt{|\det G|}G^{22}G^{44}]}{\sqrt{|\det G|}G^{22}G^{44}}\tilde{A}' - \frac{G^{00}}{G^{44}}\varrho_{H}^{2}\omega^{2}\tilde{A}$$

Boundary conditions:
$$\tilde{A} = (\varrho - \varrho_H)^{-i\mathfrak{w}} [1 + \frac{i\mathfrak{w}}{2}(\varrho - \varrho_H) + \dots]$$

 \longrightarrow shooting from
horizon

Translation to Gauge Theory by duality:

$$A_{\mu} \overset{\mathrm{AdS/CFT}}{\longleftrightarrow} J^{\mu}$$
 (source)

Gauge Correlator: [Son et al.'02]

$$G^{\rm ret} = \frac{N_f N_c T^2}{8} \lim_{\rho \to \rho_{\rm bdy}} \left(\rho^3 \frac{\partial_{\rho} \tilde{A}(\rho)}{\tilde{A}(\rho)} \right)$$

Matthias Kaminski

[Erdmenger, M.K., Rust 0710.0334]

Finite baryon density

[Erdmenger, M.K., Rust 0710.0334]

Finite baryon density

Lower temperature

$$\begin{aligned} L(\varrho) &= \varrho \, \chi(\varrho) \\ \chi_0 &= \chi(\rho) \big|_{\rho \to \rho_H} \sim \frac{m_{\text{quark}}}{T} \\ \chi &= \chi(\tilde{d}, \rho) \end{aligned}$$

$$L(\varrho) = \varrho \,\chi(\varrho)$$

$$\chi_0 = \chi(\rho) \big|_{\rho \to \rho_H} \sim \frac{m_{\text{quark}}}{T}$$

$$\chi = \chi(\tilde{d}, \rho)$$

[*Erdmenger, M.K., Rust 0710.0334*]

Matthias Kaminski

[*Erdmenger, M.K., Rust 0710.0334*]

Matthias Kaminski

Lecture IV: Beyond Hydrodynamics

$$\Re(\omega, \mathbf{q}) = -2 \operatorname{Im} G^{\operatorname{ret}}(\omega, \mathbf{q})$$

$$\Re(\omega, \mathbf{q}) = -2 \operatorname{Im} G^{\operatorname{ret}}(\omega, \mathbf{q})$$

$$\Re(\omega, \mathbf{q}) = -2 \operatorname{Im} G^{\operatorname{ret}}(\omega, \mathbf{q})$$

$$\Re(\omega, \mathbf{q}) = -2 \operatorname{Im} G^{\operatorname{ret}}(\omega, \mathbf{q})$$

IV. Thermal Spectral Function

Thermal spectral function \Re contains all information about diffusion and quasiparticle resonances in QG-plasma.

$$\Re(\omega, \mathbf{q}) = -2 \operatorname{Im} G^{\operatorname{ret}}(\omega, \mathbf{q})$$

Transport coefficients using Kubo formulae, e.g. $\sigma \sim \lim_{\omega \to 0} \frac{1}{\omega} \langle [J^t, J^t] \rangle$

IV. Thermal Spectral Function

Transport coefficients using Kubo formulae, e.g. $\sigma \sim \lim_{\omega \to 0} \frac{1}{\omega} \langle [J^t, J^t] \rangle$

IV. Chiral transport effects in QGP

Heavy-ion-collision

IV. Chiral transport effects in QGP

(similar: chiral magnetic effect)

Matthias Kaminski

IV. Chiral transport
-First order hydrodynamics
Conservation equations

$$\nabla_{\mu}T^{\mu\nu} = F^{\nu\lambda}J_{\lambda} \qquad \nabla_{\mu}j^{\mu} = CE^{\mu}B_{\mu}$$
Constitutive equations

$$T^{\mu\nu} = \frac{\epsilon}{3}(4u^{\mu}u^{\nu} + g^{\mu\nu}) + \Pi^{\mu\nu}$$

$$j^{\mu} = nu^{\mu} - \sigma T(g^{\mu\nu} + u^{\mu}u^{\nu})\partial_{\nu}\left(\frac{\mu}{T}\right) + \xi\omega^{\mu} \qquad \omega^{\mu} = \frac{1}{2}\epsilon^{\mu\nu\lambda\rho}u_{\nu}\partial_{\lambda}u_{\rho}$$

[Erdmenger, Haack, M.K., Yarom 0809.2488]

IV. Chiral transport
-First order hydrodynamics
Conservation equations

$$\nabla_{\mu}T^{\mu\nu} = F^{\nu\lambda}J_{\lambda} \qquad \nabla_{\mu}j^{\mu} = CE^{\mu}B_{\mu}$$
Constitutive equations

$$T^{\mu\nu} = \frac{\epsilon}{3}(4u^{\mu}u^{\nu} + g^{\mu\nu}) + \Pi^{\mu\nu}$$

$$j^{\mu} = nu^{\mu} - \sigma T(g^{\mu\nu} + u^{\mu}u^{\nu})\partial_{\nu}\left(\frac{\mu}{T}\right) + \xi\omega^{\mu} \qquad \omega^{\mu} = \frac{1}{2}\epsilon^{\mu\nu\lambda\rho}u_{\nu}\partial_{\lambda}u_{\rho}$$
from a gravity dual

$$S = -\frac{1}{16\pi G_{5}}\int \left[\sqrt{-g}\left(R + 12 - \frac{1}{4}F^{2}\right) - \frac{1}{12\sqrt{3}}\epsilon^{MNOPQ}A_{M}F_{NO}F_{PQ}\right]d^{5}x$$
[Erdmenger, Haack, M.K., Yarom 0809.2488]

IV. Chiral transport
-First order hydrodynamics
Conservation equations

$$\nabla_{\mu}T^{\mu\nu} = F^{\nu\lambda}J_{\lambda} \qquad \nabla_{\mu}j^{\mu} = CE^{\mu}B_{\mu}$$
Constitutive equations

$$T^{\mu\nu} = \frac{\epsilon}{3}(4u^{\mu}u^{\nu} + g^{\mu\nu}) + \Pi^{\mu\nu}$$

$$j^{\mu} = nu^{\mu} - \sigma T(g^{\mu\nu} + u^{\mu}u^{\nu})\partial_{\nu}\left(\frac{\mu}{T}\right) + \xi\omega^{\mu} \qquad \omega^{\mu} = \frac{1}{2}\epsilon^{\mu\nu\lambda\rho}u_{\nu}\partial_{\lambda}u_{\rho}$$
from a gravity dual

$$S = -\frac{1}{16\pi G_{5}}\int \left[\sqrt{-g}\left(R + 12 - \frac{1}{4}F^{2}\right) - \frac{1}{12\sqrt{3}}\epsilon^{MNOPQ}A_{M}F_{NO}F_{PQ}\right]d^{5}x$$
[Erdmenger, Haack, M.K., Yarom 0809.2488]

New vorticity term arises! related to triangle anomaly $\partial_{\mu}j^{\mu} = -\frac{1}{8}C\epsilon^{\mu\nu\alpha\beta}F_{\mu\nu}F_{\alpha\beta}$

$$\xi = C\left(\mu^2 - \frac{2}{3}\frac{\mu^3 n}{\epsilon + P}\right)$$

[Son,Surowka 0906.5044]

IV. Chiral transport
-First order hydrodynamics
Conservation equations

$$\nabla_{\mu}T^{\mu\nu} = F^{\nu\lambda}J_{\lambda} \qquad \nabla_{\mu}j^{\mu} = CE^{\mu}B_{\mu}$$
Constitutive equations

$$T^{\mu\nu} = \frac{\epsilon}{3}(4u^{\mu}u^{\nu} + g^{\mu\nu}) + \Pi^{\mu\nu}$$

$$j^{\mu} = nu^{\mu} - \sigma T(g^{\mu\nu} + u^{\mu}u^{\nu})\partial_{\nu}\left(\frac{\mu}{T}\right) + \xi\omega^{\mu} \qquad \omega^{\mu} = \frac{1}{2}\epsilon^{\mu\nu\lambda\rho}u_{\nu}\partial_{\lambda}u_{\rho}$$
from a gravity dual

$$S = -\frac{1}{16\pi G_{5}}\int \left[\sqrt{-g}\left(R + 12 - \frac{1}{4}F^{2}\right) - \frac{1}{12\sqrt{3}}\epsilon^{MNOPQ}A_{M}F_{NO}F_{PQ}\right]d^{5}x$$
[Erdmenger, Haack, M.K., Yarom 0809.2488]

New vorticity term arises! related to triangle anomaly $\partial_{\mu}j^{\mu} = -\frac{1}{8}C\epsilon^{\mu\nu\alpha\beta}F_{\mu\nu}F_{\alpha\beta}$

$$\xi = C\left(\mu^2 - \frac{2}{3}\frac{\mu^3 n}{\epsilon + P}\right)$$

[Son,Surowka 0906.5044]

Fixed by anomaly coefficient!

 ${\xi}$

Ē

New coefficient at first order hydrodynamics (~viscosity)

- New coefficient at first order hydrodynamics (~viscosity)
- $\subseteq \xi$ completely determined by C and equation of state

ξ

- New coefficient at first order hydrodynamics (~viscosity)
- \Im ξ completely determined by C and equation of state
- \bigcirc 3 ways to compute ξ :

- New coefficient at first order hydrodynamics (~viscosity)
- $\subseteq \xi$ completely determined by C and equation of state
- \bigcirc 3 ways to compute ξ :
 - conformal symmetry

- New coefficient at first order hydrodynamics (~viscosity)
- $\subseteq \xi$ completely determined by C and equation of state
- \bigcirc 3 ways to compute ξ :
 - conformal symmetry
 - positivity of entropy current (chiral anomaly)

- New coefficient at first order hydrodynamics (~viscosity)
- $\subseteq \xi$ completely determined by C and equation of state
- \bigcirc 3 ways to compute ξ :
 - conformal symmetry
 - positivity of entropy current (chiral anomaly)
 - directly in specific holographic model (microscopic)

- New coefficient at first order hydrodynamics (~viscosity)
- \Im ξ completely determined by C and equation of state
- \bigcirc 3 ways to compute ξ :
 - conformal symmetry
 - positivity of entropy current (chiral anomaly)
 - directly in specific holographic model (microscopic)
 - Relativistic hydrodynamics needs to be completed. [Baier et al, Minwalla et al 2008]
- \rightarrow
- Effects measured in heavy-ion-collisions?

Not in non-relativistic setups, so repeat for 2+1 dimensional QFT, with condensed matter applications in mind (parity anomaly?) [Nicolis & Son, 1103.2137] [1106.xxxx]

IV. Concepts -the dictionary

IV. Concepts -the dictionary

IV. Quasinormal modes

e.g. [Berti et al. '09]

Special frequencies:
$$\omega_{n} \in \mathbb{C}$$
; $\lim_{\rho \to \rho_{bdy}} |\tilde{A}(\omega_{n})|^{2} = 0$
(quasinormal)
 $e^{-i\omega r} = e^{-i\operatorname{Re}\{\omega\}r}e^{\operatorname{Im}\{\omega\}r}$
Example:
 $G^{\operatorname{ret}} = \frac{N_{f}N_{c}T^{2}}{8}\lim_{\rho \to \rho_{bdy}} \left(\rho^{3}\frac{\partial_{\rho}\tilde{A}(\rho)}{\tilde{A}(\rho)}\right)$

 $\int_{0}^{10} \int_{0}^{10} \int_{0}^$

IV. Quasinormal modes

e.g. [Berti et al. '09]

IV. Quasi Normal Modes (QNMs)

Simple example: Eigenfrequencies / normal modes of the quantum mechanical harmonic oscillator (no damping)

$$\omega_n = \frac{1}{2} + n$$

quasinormal frequencies

Matthias Kaminski

IV. Quasi Normal Modes (QNMs)

$$G_{ret} \propto \frac{1}{i\omega - Dq^2}$$

Example: Poles of charge current correlator

- QNMs are the quasieigenmodes of gauge field
- Dual QFT: lowest QNM identified with hydrodynamic diffusion pole (not propagating)
- Higher QN modes: gravity field waves propagate through curved b.h. background while decaying (dual gauge currents analogously)

IV. Quasi Normal Modes (QNMs)

Complex frequency plane

Trajectories (dial k)

Lecture V: Phase Transitions

Result to 3.2 d) from exercise III

The mass parameter m depending on the parameter χ_0 .

Other relations:

$$L(\varrho) = \varrho \, \chi(\varrho) \,, \quad \rho = \frac{\varrho}{\rho_H}$$

$$\chi_0 = \chi(\rho) \big|_{\rho \to \rho_H}$$

$$m = \lim_{\rho \to \rho_{\rm bdy}} \rho \, \chi(\rho) = \frac{2m_{\rm quark}}{\sqrt{\lambda}T}$$

Near-boundary expansions:

$$\chi(\rho) = \frac{m}{\rho} + \frac{c}{\rho^3} + \dots$$
$$A_0 = \mu - \frac{1}{\rho^2} \frac{\tilde{d}}{2\pi\alpha'} + \dots$$

Matthias Kaminski

•

N_c D₃-branes dual to $\mathcal{N} = 4$ SYM with $SU(N_c)$

Matthias Kaminski

 $N_f D_7$ -branes dual to $\mathcal{N} = 2$ $SU(N_f)$ flavor [Karch,Katz hep-th/0205236]

N_c D₃-branes dual to $\mathcal{N} = 4$ SYM with $SU(N_c)$

Matthias Kaminski

 N_f D7-branes dual to $\mathcal{N} = 2$ $SU(N_f)$ flavor [Karch,Katz hep-th/0205236]

• N_c D₃-branes (black) dual to $\mathcal{N} = 4$ SYM with $SU(N_c)$

Matthias Kaminski

Gravity solution & translation

[*Erdmenger, M.K., Rust 0710.0334*]

Effective action:

$$S_{\rm D7} = \int d^8 x \sqrt{\left| \det\{[g+F] + \tilde{F}\} \right|} \,, \ F_{\mu\nu} = \partial_{[\mu} A_{\nu]}$$

Gravity solution & translation

[*Erdmenger, M.K., Rust 0710.0334*]

Effective action:

$$S_{\rm D7} = \int {\rm d}^8 x \sqrt{\left| \det\{[g+F] + \tilde{F}\} \right|} \,, \ F_{\mu\nu} = \partial_{[\mu} A_{\nu]}$$

"Background": Brane embedding & gauge field

$$S_{\text{DBI}} = -N_f T_{\text{D7}} \varrho_H^3 \int d^8 \xi \, \frac{\rho^3}{4} f \tilde{f} (1 - \chi^2)$$
$$\times \sqrt{1 - \chi^2 + \rho^2 {\chi'}^2 - 2 \frac{\tilde{f}}{f^2} (1 - \chi^2) \tilde{F}_{\rho 0}^2}$$

[Erdmenger, M.K., Rust 0710.0334]

Effective action:

$$S_{\rm D7} = \int {\rm d}^8 x \sqrt{\left| \det\{[g+F] + \tilde{F}\} \right|} \,, \ F_{\mu\nu} = \partial_{[\mu} A_{\nu]}$$

"Background": Brane embedding & gauge field

$$S_{\text{DBI}} = -N_f T_{\text{D7}} \varrho_H^3 \int d^8 \xi \, \frac{\rho^3}{4} f \tilde{f} (1 - \chi^2)$$
$$\times \sqrt{1 - \chi^2 + \rho^2 {\chi'}^2 - 2 \frac{\tilde{f}}{f^2} (1 - \chi^2) \tilde{F}_{\rho 0}^2}$$

Solutions to Euler-Lagrange equations give "profiles" in radial direction

Flavor brane embeddings (D7-branes)

Flavor brane embeddings (D7-branes)

Numerical method: shooting from horizon

Matthias Kaminski

Flavor brane embeddings (D7-branes)

Numerical method: shooting from horizon

Matthias Kaminski

[Erdmenger, M.K., Rust 0710.0334]

Effective action:

$$S_{\rm D7} = \int {\rm d}^8 x \sqrt{\left| \det\{[g+F] + \tilde{F}\} \right|} \,, \ F_{\mu\nu} = \partial_{[\mu} A_{\nu]}$$

[Erdmenger, M.K., Rust 0710.0334]

Effective action:
$$S_{D7} = \int d^8x \sqrt{\left|\det\{[g+F] + \tilde{F}\}\right|}, F_{\mu\nu} = \partial_{[\mu}A_{\nu]}$$

Fluctuations

Equation of motion:
$$0 = \tilde{A}'' + \frac{\partial_{\rho}[\sqrt{|\det G|}G^{22}G^{44}]}{\sqrt{|\det G|}G^{22}G^{44}}\tilde{A}' - \frac{G^{00}}{G^{44}}\varrho_{H}^{2}\omega^{2}\tilde{A}$$

[Erdmenger, M.K., Rust 0710.0334]

Effective action:

$$S_{\mathrm{D7}} = \int \mathrm{d}^8 x \sqrt{\left| \det\{[g+F] + \tilde{F}\} \right|}, \quad F_{\mu\nu} = \partial_{[\mu} A_{\nu]}$$

Fluctuations

Equation of motion:

Curved' Maxwell equations:

$$\partial_{\mu} F^{\mu\nu} = 0$$

$$\partial_{\mu} \left(\sqrt{-G} G^{\mu\nu} G^{\rho\sigma} F_{\nu\sigma} \right) = 0$$

$$\partial_{\mu} \left(\sqrt{-G} G^{\mu\nu} G^{\rho\sigma} \partial_{[\nu} \tilde{A}_{\sigma]} \right) = 0$$

[Erdmenger, M.K., Rust 0710.0334]

Effective action:
$$S_{D7} = \int d^8x \sqrt{\left|\det\{[g+F] + \tilde{F}\}\right|}, F_{\mu\nu} = \partial_{[\mu}A_{\nu]}$$

Fluctuations

Equation of motion:
$$0 = \tilde{A}'' + \frac{\partial_{\rho}[\sqrt{|\det G|}G^{22}G^{44}]}{\sqrt{|\det G|}G^{22}G^{44}}\tilde{A}' - \frac{G^{00}}{G^{44}}\varrho_{H}^{2}\omega^{2}\tilde{A}$$

[Erdmenger, M.K., Rust 0710.0334]

Effective action:
$$S_{D7} = \int d^8 x \sqrt{\left| \det\{[g+F] + \tilde{F}\} \right|}, \quad F_{\mu\nu} = \partial_{[\mu}A_{\nu]}$$

Fluctuations

Equation of motion:
$$0 = \tilde{A}'' + \frac{\partial_{\rho}[\sqrt{|\det G|}G^{22}G^{44}]}{\sqrt{|\det G|}G^{22}G^{44}}\tilde{A}' - \frac{G^{00}}{G^{44}}\varrho_{H}^{2}\omega^{2}\tilde{A}$$

Boundary conditions:
$$\tilde{A} = (\varrho - \varrho_H)^{-i\omega} [1 + \frac{i\omega}{2}(\varrho - \varrho_H) + ...]$$

[*Erdmenger, M.K., Rust 0710.0334*]

Effective action:
$$S_{D7} = \int d^8 x \sqrt{\left| \det \{ [g+F] + \tilde{F} \} \right|}, \quad F_{\mu\nu} = \partial_{[\mu} A_{\nu]}$$

Fluctuations

Equation of motion:
$$0 = \tilde{A}'' + \frac{\partial_{\rho}[\sqrt{|\det G|}G^{22}G^{44}]}{\sqrt{|\det G|}G^{22}G^{44}}\tilde{A}' - \frac{G^{00}}{G^{44}}\varrho_{H}^{2}\omega^{2}\tilde{A}$$

Boundary conditions:
$$\tilde{A} = (\varrho - \varrho_H)^{-i\mathfrak{w}} [1 + \frac{i\mathfrak{w}}{2}(\varrho - \varrho_H) + \dots]$$

Translation to Gauge Theory by duality:

$$A_{\mu} \stackrel{{}_{\mathrm{AdS/CFT}}}{\leftrightarrow} J^{\mu}$$
 (source)

[Erdmenger, M.K., Rust 0710.0334]

Effective action:
$$S_{D7} = \int d^8 x \sqrt{\left| \det \{ [g+F] + \tilde{F} \} \right|}, \quad F_{\mu\nu} = \partial_{[\mu} A_{\nu]}$$

Fluctuations

Equation of motion:
$$0 = \tilde{A}'' + \frac{\partial_{\rho}[\sqrt{|\det G|}G^{22}G^{44}]}{\sqrt{|\det G|}G^{22}G^{44}}\tilde{A}' - \frac{G^{00}}{G^{44}}\varrho_{H}^{2}\omega^{2}\tilde{A}$$

Boundary conditions:
$$\tilde{A} = (\varrho - \varrho_H)^{-i\mathfrak{w}} [1 + \frac{i\mathfrak{w}}{2}(\varrho - \varrho_H) + \dots]$$

 \longrightarrow shooting from
horizon

Translation to Gauge Theory by duality:

$$A_{\mu} \overset{{}_{\mathrm{AdS/CFT}}}{\longleftrightarrow} J^{\mu}$$
 (source)

Gauge Correlator: [Son et al.'02]

$$G^{\rm ret} = \frac{N_f N_c T^2}{8} \lim_{\rho \to \rho_{\rm bdy}} \left(\rho^3 \frac{\partial_{\rho} \tilde{A}(\rho)}{\tilde{A}(\rho)} \right)$$

Matthias Kaminski

[Erdmenger, M.K., Rust 0710.0334]

Finite baryon density

[Erdmenger, M.K., Rust 0710.0334]

Finite baryon density

Lower temperature

$$\begin{aligned} L(\varrho) &= \varrho \, \chi(\varrho) \\ \chi_0 &= \chi(\rho) \big|_{\rho \to \rho_H} \sim \frac{m_{\text{quark}}}{T} \\ \chi &= \chi(\tilde{d}, \rho) \end{aligned}$$

[Erdmenger, M.K., Rust 0710.0334]

[Erdmenger, M.K., Rust 0710.0334]

$$L(\varrho) = \varrho \,\chi(\varrho)$$

$$\chi_0 = \chi(\rho) \big|_{\rho \to \rho_H} \sim \frac{m_{\text{quark}}}{T}$$

$$\chi = \chi(\tilde{d}, \rho)$$

/ U \

[*Erdmenger, M.K., Rust 0710.0334*]

[*Erdmenger, M.K., Rust 0710.0334*]

Matthias Kaminski

[*Erdmenger, M.K., Rust 0710.0334*]

Flavor brane embeddings (T=0, d=0)

[Kruczenski et al, hep-th/0304032]

Background

Analytical solution for embeddings gives induced metric

$$ds^{2} = \frac{\rho^{2} + L^{2}}{R^{2}} ds^{2} (\mathbb{E}^{(1,3)}) + \frac{R^{2}}{\rho^{2} + L^{2}} d\rho^{2} + \frac{R^{2} \rho^{2}}{\rho^{2} + L^{2}} d\Omega_{3}^{2}$$

Flavor brane embeddings (T=0, d=0)

[Kruczenski et al, hep-th/0304032]

Background

Analytical solution for embeddings gives induced metric

$$ds^{2} = \frac{\rho^{2} + L^{2}}{R^{2}} ds^{2} (\mathbb{E}^{(1,3)}) + \frac{R^{2}}{\rho^{2} + L^{2}} d\rho^{2} + \frac{R^{2} \rho^{2}}{\rho^{2} + L^{2}} d\Omega_{3}^{2}$$

Fluctuations

Analytic solutions with spherical harmonics (l)

Supersymmetric vector meson mass formula

$$M_{\rm v} = \frac{2L}{R^2} \sqrt{(n+l+1)(n+l+2)}$$

 $n \,$ counts nodes of solution in radial AdS direction

High isospin densities: instabilities

[Erdmenger, M.K., Kerner, Rust 0807.2663]

Matthias Kaminski

High isospin densities: instabilities

[Erdmenger, M.K., Kerner, Rust 0807.2663]

Matthias Kaminski

Building a holographic superfluid

Get some intuition

 $\mu_{\rm isopin} \sim M_q$

Get some intuition

large enough chemical potential $\mu_{
m isopin} \sim M_q$

strings (D3-D5) give FT charges
cannot put infinitely many
second brane is important
(probe limit)

Get some intuition

We need a non-Abelian structure!

Vector meson superfluid

General idea

[Erdmenger, M.K., Kerner, Rust 0807.2663]

$$A_0^3 = \mu + \frac{d}{\rho^2} + \dots$$

Vector meson superfluid

General idea

[Erdmenger, M.K., Kerner, Rust 0807.2663]

$$A_0^3 = \mu + \frac{d}{\rho^2} + \dots$$

[Ammon, Erdmenger, M.K., Kerner 0810.2316]

$$A_0^3 = \mu + \frac{d_0^3}{\rho^2} + \dots$$
$$A_3^1 = \frac{d_3^1}{\rho^2} + \dots$$
_[Gubser, Pufu 0805.2960]

DEL EVE NUMINE

Matthias Kaminski

Vector meson superfluid

General idea

[Erdmenger, M.K., Kerner, Rust 0807.2663]

$$A_0^3 = \mu + \frac{d}{\rho^2} + \dots$$

[Ammon, Erdmenger, M.K., Kerner 0810.2316]

$$A_{0}^{3} = \mu + \frac{d_{0}^{3}}{\rho^{2}} + \dots$$

$$A_{3}^{1} = \frac{d_{3}^{1}}{\rho^{2}} + \dots$$

$$\int_{[Gubser, Pufu \ 0805.2960]} \frac{d_{0}^{3}}{\rho^{2}} + \dots$$

Matthias Kaminski

Phenomenology of a superfluid/ superconductor

- second order phase transition
 mean-field theory critical
 exponents
- energy gap in the conductivity ("Cooper pair" binding)
- Meissner-Ochsenfeld effect,
- condensate destroyed at large B

Phenomenology of a superfluid/ superconductor

- second order phase transition
 mean-field theory critical
 exponents
- energy gap in the conductivity ("Cooper pair" binding)
- Meissner-Ochsenfeld effect,

condensate destroyed at large B

This looks like a superfluid/conductor!

Stringy pairing picture

