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Introduction to String Theory

Exercises III

Ex. 3.1 Polchinski exercise 4.2

Hint: Recall that for a highest weight state Lmn |χ〉 = 0, and for a physical state (Lmn +
Amδn,0)|φ〉 = 0.

Ex. 3.2 Compactifications, T-duality & S-duality

Recall that T-duality and S-duality relate various string theories to each other. They
are thus a vital ingredient for our understanding of the terra incognita of M-theory.

T-duality in bosonic string theory compactified on a circle with radius R in the 25th

dimension is a symmetry of the bosonic string solution under a particular transforma-
tion. This is the transformation of the compactification radius R → R̃ = ls

2/R and
simultaneous interchange of the winding number W with the Kaluza-Klein excitation
number K. Therefore, bosonic string theory compactified on a circle with radius R
with W windings around that circle and with momentum p25 = K/R is equivalent to
a bosonic string theory compactified on a circle with radius ls2/R with winding num-
ber K and momentum p25 = W/R. To see this in more detail, consider the closed
bosonic string action in 25-dimensional bosonic string theory with target space coordi-
nates Xµ [1]

Sbosonic = −T
∫
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√
−det gµν∂αXµ∂βXν , (1)

with the metric g, the string tension T and a 1 + 1-dimensional parametrization (σ0 =
τ, σ1 = σ) of the world sheet where α, β = 0, 1. Here the parameters are the world-
sheet time τ = 0, . . . , 2π and spatial coordinate σ = 0, . . . , π. Note, that we could
generalize this action (1) to the case of a simple p-dimensional object, a Dp-brane. The
most general solution is given by the sum of one solution in which the modes travel
in one direction on the closed string (left-movers) and the second solution where the
modes travel in the opposite direction (right-movers)
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which for closed strings are given by
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These solutions each consist of three parts: the center of mass position term, the total
string momentum or zero mode term and the string excitations given by the sum.

a) What do you get if you compactify the 25th dimension on a circle with radius R?



Answer:

X25
L = 1

2(x25 + x̃25) + (α′p25 +WR)(τ + σ) + . . . (5)

X25
R = 1

2(x25 − x̃25) + (α′p25 −WR)(τ − σ) + . . . , (6)

We leave out the sum over excitation modessince it is invariant under compactifica-
tion. Only the zero mode is affected by the compactification since the momentum
becomes p25 = K/R with K labeling the levels of the Kaluza-Klein tower of excitations
becoming massive upon compactification. An extra winding term is added as well.

b) So what is the sum of both solutions in 25-direction?

Answer:

X25 = x25 + 2α′KR τ + 2WRσ + . . . . (7)

We now see explicitly that the transformation W ↔ K, R → α/R applied to equa-
tions (5) and (6) is a symmetry of this theory because the zero mode changes as (α′K/R±
WR)→ (α′WR/α′ ±Kα′/R) = (WR± α′K/R). So we get the transformed solution

X̃25 = x̃25 + 2WRτ + 2α′KR σ + . . . . (8)

Comparing the solutions (8) and (7) we note that the transformed solution is equal to
the original one except for the fact that σ and τ are interchanged. However, the bosonic
string action is reparametrization invariant ∗ under (τ, σ) → (τ̃ , σ̃). Therefore we see
that physical quantities like correlation functions are invariant under the T-duality
tranformation.

From this duality we learn how we may start from one string theory and by different
ways of compactification we arrive at two distinct but equivalent formulations of the
same physics. Another important feature is that certain quantities change their roles
as we go from one compactification to the other (winding modes turn into Kaluza-Klein
modes as K ↔W ). Finally we realize that T-duality relates a theory compactified on
a large circle R to a theory compactified on a small circle α′/R.

By virtue of T-duality another important ingredient for the gauge/gravity correspon-
dence was introduced into string theory: Dp-branes. Introducing open strings into the
bosonic theory of closed strings, we need to specify boundary conditions at the string
end points. A natural criterion for these boundary conditions is to preserve Poincaré
invariance. So we would choose Neumann boundary conditions ∂σXµ = 0 at the end
points σ = 0, π. Evaluating this condition for the general solution given in (7), we see
that the Neumann condition turns into a Dirichlet boundary condition ∂τXµ = 0. This
condition explicitly breaks Poincaré invariance by fixing p of the spatial coordinates of
open string ends to τ -independent hypersurfaces. These surfaces are called Dirichlet-
or Dp-branes and have to be considered as dynamical objects in addition to the funda-
mental strings. We will see below that AdS/CFT is a duality arising from two distinct
ways of describing these Dp-branes in open string theory.

∗S-duality exchanges the fundamental strings (i.e. the NS-NS or the Ramond-Ramond two-forms)
with the D1-branes. So, roughly speaking the string behaves like a D1-brane. Generalizing the case p =
1 to arbitrary p we would find that the Dp-brane action is reparametrization invariant under a change
of the p+ 1 world-volume coordinates given by σα → σα(σ̃).
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Analogous to T-duality, S-duality relates a string theory with coupling constant gs to
a string theory with coupling 1/gs.

Ex 3.3 is a HOMEWORK TASK: Spinors & supersymmetry

Read appendix B.1 and B.2 (in particular the remarks on supergravity therein).
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