Introduction to Gauge/Gravity & Heavy-Ion-Applications

Exercises III

Ex. 3.1 Viscosity Bound

a) Find a numerical solution to the equation

$$0 = \phi'' - \frac{1 + u^2}{uf}\phi' + \frac{\omega^2 - q^2f}{uf^2}\phi,$$
 (1)

with $f = (1 - u^2)$. Use the ingoing boundary condition at the horizon u = 1, and choose an arbitrary normalization $(\phi(u = 1) = 1 \text{ may be convenient})$. The boundary is located at u = 0 in these coordinates.

This equation arises as the equation of motion for the off-diagonal (shear) metric perturbation h_{xy} in $\mathcal{N}=4$ SYM. This perturbation is holographically dual to (in other words its boundary value does source) the energy momentum tensor component T_{xy} in the dual gauge theory. Let us set $\vec{q}=0$.

- b) Compute the two-point correlation function $G^R_{xy,xy}(\omega,\vec{0}) = \langle T_{xy}T_{xy}\rangle(\omega,\vec{0})$, and plot the thermal spectral function against frequency ω .
- c) Use the following Kubo formula in order to numerically compute the shear viscosity

$$\eta = -\lim_{\omega \to 0} \frac{1}{2\omega} \operatorname{Im} G_{xy,xy}^{R}(\omega, \vec{q} = 0).$$
 (2)

d) In which sense is this approach more powerful than the hydrodynamic one?

Ex. 3.2 Charged Hot Plasma from Flavor Branes

Recall the D7-probe-branes from exercise I. These introduced quarks, or more generally matter fields in the fundamental representation of the "color" group $SU(N_c)$. We are able to turn on a gauge field strength $F_{\rho t}$ on the worldvolume of these D7-branes. We want to work in the canonical ensemble, i.e. at a fixed finite charge density. This setup is described by the DBI-action

$$S_{D7} = -N_f T_{D7} \int d^8 \sigma \frac{\varrho^3}{4} f \tilde{f}(1 - \chi^2) \sqrt{1 - \chi^2 + \varrho^2 (\partial_\varrho \chi)^2 - 2(2\pi l_s^2)^2 \frac{\tilde{f}}{f^2} (1 - \chi^2) F_{\varrho t}^2}, \quad (3)$$

where A_t depends solely on ρ . which was obtained after computing the induced metric and its determinant similarly as we have done in Exercise 1.2.

a) Find the equation of motion for the background field $A_t(\rho)$. There is a conserved quantity, name it d.

b) In order to work in the canonical ensemble in the field theory, Legendre-transform the DBI-action with respect to the quantity d, eliminating A_t .

Varying this Legendre transformed action with respect to the field χ gives the equation of motion for the embeddings $\chi(\rho)$,

$$\partial_{\rho} \left[\frac{\rho^{5} f \tilde{f} (1 - \chi^{2}) \chi'}{\sqrt{1 - \chi^{2} + \rho^{2} {\chi'}^{2}}} \sqrt{1 + \frac{8\tilde{d}^{2}}{\rho^{6} \tilde{f}^{3} (1 - \chi^{2})^{3}}} \right]$$

$$= -\frac{\rho^{3} f \tilde{f} \chi}{\sqrt{1 - \chi^{2} + \rho^{2} {\chi'}^{2}}} \sqrt{1 + \frac{8\tilde{d}^{2}}{\rho^{6} \tilde{f}^{3} (1 - \chi^{2})^{3}}}$$

$$\times \left[3(1 - \chi^{2}) + 2\rho^{2} {\chi'}^{2} - 24\tilde{d}^{2} \frac{1 - \chi^{2} + \rho^{2} {\chi'}^{2}}{\rho^{6} \tilde{f}^{3} (1 - \chi^{2})^{3} + 8\tilde{d}^{2}} \right].$$

$$(4)$$

where we have introduced the dimensionless \tilde{d} which now replaces d, and dimensionless radial coordinate $\rho = \varrho/\varrho_H$.

- c) Find some embeddings at finite charge density and compare to the one without any charge.
- d) Plot the mass parameter m as a function of the horizon parameter χ_0 for distinct values of \tilde{d} .
- e) Which field theory object do fluctuations of the gauge field on the brane correspond to? What are their charges under $SU(N_c)$ and $SU(N_f)$? What would change if we wanted to embed $N_f = 2$ coincident D7-branes?
- *f) Show that the charge on the brane is generated by a bundle of D3-D7 strings located at the horizon.