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Exercises II

Ex. 2.1 Relativistic Hydrodynamics in d dimensions

The energy-momentum tensor for a dissipative fluid is given by

T µν = (ǫ + P )uµuν + Pgµν + Πµν .

The dissipative part Πµν may be written as

Πµν = −2ησµν − ζθPµν ,

where η is the shear viscosity and ζ the bulk viscosity. We have the velocity uµ, energy
density ǫ, pressure P . The traceless symmetric tensor σµν and the trace part θ are
defined as

σµν = PµαP νβ∇(αuβ) −
1

d − 1
θPµν ,

θ = ∇µuµ = Pµν∇µuν ,

where Pµν = uµuν + gµν .

a) Show that Pµν is the projection operator onto directions perpendicular to uµ, i. e.
prove Pµνuν = 0, PµαPαν = Pµ

ν = Pµαgαν and Pµ
µ = d − 1.

b) Show that the entropy current is not conserved and satisfies

∇µJµ
s =

2η

T
σαβσαβ +

ζ

T
θ2 .

What is the implication of this equation on the sign of η and ζ?

Hint: You may use the identity 0 = T∇µ(suµ)+Πµν∇µuν . Additionally, show that the
energy momentum-tensor satisfies the Landau frame condition uνT

µν = −ǫuµ. This
implies uνσ

µν = 0 which is needed in the calculation.

Ex. 2.2 Correlators & Thermal Spectral Functions

Remark: There is probably not enough time to derive every step in this exercise. It may
be useful to work along (arXiv:hep-th/0205052, and possibly also arXiv:0808.1114).

Apply the recipe introduced in the lecture in order to compute some correlation func-
tions in N = 4 SYM theory with R-charge current Jµ (dual to the five-dimensional
vector field Aµ on the gravity side).

The part of the action quadratic in the gauge field A is given by

S(2) = −
N2

16π2

∫

dud4x
√

−g(u)FµνFµν . (1)



In order to place our field theory at finite temperature, we will work in the dual
AdS black hole background

ds2 =
(πTR)2

u
[−f(u)dt2 + dx2] +

R2

4u2f(u)
du2 + R2dΩ5

2 , (2)

with the radial AdS-coordinate u ∈ [0, 1], the horizon at u = 1, spatial infinity at u = 0
and the function f(u) = 1 − u2. This metric is obtained from the standard AdS black
hole metric with radial coordinate r by the transformation u = (r0/r)

2. The tempera-
ture T = r0/(πR2) is a function of the AdS-radius R and the black hole horizon r0.

a) Derive the equations of motion for the gauge field components in Fourier-space using

Ai(u, ~x) =

∫

d4k

(2π)4
e−iωt+ik·xAi(u,~k) . (3)

b) Find the indicial exponents which regularize the regular singular coefficients at the
horizon.

c) Expand the function into powers of ω and q2, plug this into the equation of motion
and expand the resulting expression into powers of ω and q2. Solve this order by order.

d) Compute the correlation functions 〈JtJt〉 and 〈JxJx〉.

Ex. 2.3 Viscosity Bound

a) Find a numerical solution to the equation

0 = φ′′ −
1 + u2

uf
φ′ +

ω2 − q2f

uf2
φ , (4)

with f = (1 − u2). Use the ingoing boundary condition at the horizon u = 1, and
choose an arbitrary normalization (φ(u = 1) = 1 may be convenient).

This equation arises as the equation of motion for the off-diagonal (shear) metric per-
turbation hxy in N = 4 SYM. This perturbation is holographically dual to (in other
words its boundary value sources) the energy momentum tensor component Txy in the
dual gauge theory. Let us set ~q = 0.

b) Compute the two-point correlation function GR
xy,xy(ω,~0) = 〈TxyTxy〉(ω,~0), and plot

the thermal spectral function against frequency ω.

c) Use the following Kubo formula in order to numerically compute the shear viscosity

η = − lim
ω→0

1

2ω
ImGR

xy,xy(ω, ~q = 0) . (5)

d) In which sense is this approach more powerful than the hydrodynamic one?
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