Introduction to Gauge/Gravity \& Heavy-Ion-Applications

Exercises I

Ex. 1.1 AdS coordinates

Let us imagine a $(d+2)$-dimensional flat space. Now embed a curved space into this flat space, for example a Lorentzian $A d S_{d+1}$. It can be defined by the locus

$$
\begin{equation*}
-L^{2}=\eta_{a b} X^{a} X^{b}=-\left(X^{d+1}\right)^{2}-\left(X^{0}\right)^{2}+\sum_{i=1}^{d}\left(X^{i}\right)^{2} \tag{1}
\end{equation*}
$$

where $X \in \mathbb{R}^{2, d}$ and $d s^{2}=\eta_{a b} d X^{a} d X^{b}$ with $\eta=\operatorname{diag}(-1,1,1, \ldots, 1,-1)$. In the following we parametrize the locus (1) in different ways.
a) As an example draw a picture of $A d S_{2}$ embedded in $\mathbb{R}^{2,1}$!
b) Compute the curvature \mathcal{R} (Riemann scalar) of $A d S_{2}$. This space has the metric

$$
\begin{equation*}
d s^{2}=\frac{L^{2}}{r^{2}}\left(d r^{2}-d t^{2}+d x^{2}\right) \tag{2}
\end{equation*}
$$

Use Mathematica with the package diffgeo.m, or an equivalent program and/or package for differential geometry.

Ex. 1.2 Brane embeddings

The near-horizon limit of a stack of N_{c} black D3-branes generates a geometry with the metric

$$
\begin{equation*}
d s^{2}=\frac{1}{2}\left(\frac{\varrho}{L}\right)^{2}\left(-\frac{f^{2}}{\tilde{f}} d t^{2}+\tilde{f} d \vec{x}^{2}\right)+\left(\frac{L}{\varrho}\right)^{2}\left(d \varrho^{2}+\varrho^{2} d \Omega_{5}^{2}\right) \tag{3}
\end{equation*}
$$

with the functions

$$
\begin{equation*}
f=\left(1-\frac{\varrho_{H}^{4}}{\varrho^{4}}\right), \quad \tilde{f}=\left(1+\frac{\varrho_{H}^{4}}{\varrho^{4}}\right) \tag{4}
\end{equation*}
$$

The function $f=\left(1-\frac{\varrho_{H}^{4}}{\varrho^{4}}\right)$ shows the presence of a horizon since it makes the metric component $g_{t t}$ vanish at a finite radius ϱ_{H}, i.e. $g_{t t}\left(\varrho_{H}\right)=0$. This horizon is located at $\varrho_{H}=T \pi L^{2}$, where T is the Hawking temperature which coincides with the temperature of the dual thermal field theory. L is the radius of the AdS space.
This metric (3) reduces to the $A d S_{5} \times S^{5}$ black hole metric known from the lecture with the coordinate transformation $\varrho^{2}=u^{2}+\sqrt{u^{4}-u_{H}^{4}}$.

We prepare the metric by writing out some of the S^{5}-coordinates namely

$$
\begin{equation*}
d \varrho^{2}+\varrho^{2} d \Omega_{5}^{2}=d \varrho^{2}+\varrho^{2}\left(d \theta^{2}+\cos ^{2} \theta d \phi^{2}+\sin ^{2} \theta d \Omega_{3}^{2}\right) \tag{5}
\end{equation*}
$$

Now we embed a D7-brane into this geometry. It shares the four Minkowski-coordinates (t, x, y, x) with the D3-branes, but also wraps four additional coordinate directions as indicated in the table:

	0	1	2	3	4	5	6	7	8	9
D 3	X	X	X	X						
D 7	X	X	X	X	X	X	X	X		

a) Compute the metric G which is induced on the D 7 brane.

The world-volume theory on the D7-brane is described by the Dirac-Born-Infeld (DBI) action

$$
\begin{align*}
S_{D T} & =-N_{f} T_{D 7} \int d^{8} \xi \sqrt{-G} \tag{6}\\
& =-N_{f} T_{D 7} \varrho_{H}^{3} \int d^{8} \xi \frac{\rho^{3}}{4} f \tilde{f}\left(1-\chi^{2}\right) \sqrt{1-\chi^{2}+\rho^{2} \chi^{\prime 2}} \tag{7}
\end{align*}
$$

with the brane tension $T_{D 7}$, the dimensionless radial coordinate $\rho=\varrho / \varrho_{H}$, the embedding function $\chi(\rho)=\cos \theta(\rho)$ and the induced metric G.

Varying this DBI-action with respect to the field χ, we get its Euler-Lagrange equation

$$
\begin{equation*}
0=\partial_{\rho}\left[\frac{\rho^{5} f \tilde{f}\left(1-\chi^{2}\right) \chi^{\prime}}{\sqrt{1-\chi^{2}+\rho^{2} \chi^{\prime 2}}}\right]+\frac{\rho^{3} f \tilde{f} \chi}{\sqrt{1-\chi^{2}+\rho^{2} \chi^{\prime 2}}}\left[3\left(1-\chi^{2}\right)+2 \rho^{2} \chi^{\prime 2}\right] \tag{8}
\end{equation*}
$$

b) Find the three leading terms in χ as a function of ρ near the horizon $\rho=1$.
c) Find a numerical solution for equation (8), and plot that solution against the radial coordinate ρ.

Hint: You may use a shooting method.
*d) Extract the quark mass from the near-boundary behavior of the numerical solution and plot it versus the horizon-parameter χ_{0}.

